

WAVE FACTORY

MULTIFUNCTION GENERATOR

WF1973/WF1974

Specifications

Contents

1.	OV	ERVIEW	2
	1.1	General	2
	1.2	Features	2
2.	CO	NFIGURATION	3
3.	SPI	ECIFICATIONS	3
	3.1	Oscillation Modes	3
	3.2	Waveforms	3
	3.2.	.1 Standard waveforms	3
	3.2.	.2 Arbitrary waveforms	3
	3.3	Frequency, Phase	4
	3.4	Output Characteristics	4
	3.4.	.1 Amplitude	4
	3.4.	.2 DC offset	5
	3.4.	.3 Load impedance setting	5
	3.4.	.4 Waveform output	5
	3.4.	.5 Sync/sub output	5
	3.5	Signal Characteristics	5
	3.5	.1 Sine wave	5
	3.5.	.2 Square wave	6
	3.5.	.3 Pulse wave	7
	3.5.	.4 Ramp wave	7
	3.5.	.5 Parameter-variable waveforms	7
	3.6	Modulated Oscillation Mode	. 10
	3.6	.1 General	. 10
	3.6.	.2 Modulation conditions	. 10
	3.7	Sweep Oscillation Mode	. 11
	3.7	.1 General	. 11
	3.7	.2 Sweep conditions	. 12
	3.8	Burst Oscillation Mode	. 13
	3.9	Triggers	.14
	3.10	Sequence	. 14
	3.11	Other I/Os	. 15
	3.12	2-channel ganged operation (WF1974 only)	. 16
	3.13	Synchronous Operation of Multiple Units	. 17
	3.14	User - Defined Units	.18
	3.15	Other Functions	. 18
	3.16	Options	.18
	3.17	General Characteristics	. 19
	■Blo	ock Diagram	. 20
	■ Ext	ternal Dimensions	.21

1. OVERVIEW

1.1 General

The WF1973 and WF1974 are multifunctional generators based on direct digital synthesizers (DDS).

The WF1973 is a 1-channel generator, while the WF1974 is a two-channel generator.

1.2 Features

- Highest frequency: 30 MHz (sine wave), 15 MHz (square wave, pulse)
- Frequency accuracy: $\pm (3 \text{ ppm} + 2 \text{ pHz})$, high resolution of 0.01 μ Hz. 10 MHz external frequency reference can be used.
- Maximum output voltage: 20 Vp-p/open, 10 Vp-p/50 Ω
- Large number of standard parameter-variable waveforms: Sine wave, square wave (variable duty), pulse (variable pulse width/duty, leading edge time, trailing edge time), ramp wave (variable symmetry), CF controlled sine wave (variable crest factor), staircase sine wave (variable number of steps), Gaussian pulse (variable σ), Sin(x)/x (variable number of zero crossings), exponential rise/fall (variable time constant), damped oscillation (variable oscillation frequency, damping time constant), pulse surge (variable rising and duration times), trapezoid (variable rise, fall, and upper base width), and so on.
- Large-capacity arbitrary waveform memory: 512 K words max., saving capacity: 128 waveforms/4 M words
- Phase and waveform remain continuous even when frequency is changed or during frequency sweep.
- Square wave, pulse with variable duty and high resolution of 0.0001%
- Pulse with variable leading edge time and trailing edge time
- Various oscillation modes
 - Continuous oscillation
 - Modulation: FM, FSK, PM, PSK, AM, DC offset modulation, PWM
 - Sweep: Frequency, phase, amplitude, DC offset, duty
 - Burst oscillation: Auto burst, trigger burst, gate oscillation, triggered gate oscillation
 - Sequence oscillation: Variable waveform/ frequency/ phase/ amplitude/ DC offset/ square wave duty, constant value/ linear interpolation, jump/ repeat/ hold/ branch
- Sequence function for easy test waveform creation and adjustment
 - Flexible waveform creation possible through combination with standard parameter-variable waveforms
 - Frequency, phase, amplitude, etc., can be rapidly changed and swept
- Intuitive user interface through use of high-resolution QVGA TFT color LCD
- Two-channel ganged function with 2 phases, constant frequency difference, constant frequency ratio, and differential output (only WF1974)
- Floated from housing for each channel to reduce effect of ground loop
- Multiple-phase oscillator can be configured by synchronizing multiple units
- USB and GPIB interfaces provided
- Thin and lightweight: Height of approx. 9 cm, weight of approx. 2.1 kg

2. CONFIGURATION

Main unit
Accessories
Instruction Manual (Basics)1
CD(PDF instruction manuals, application software)
PDF instruction manuals:
Basics, Application, Remote Control, Arbitrary Waveform Editing
Software, Sequence Editing Software, LabVIEW Driver
Application software:
Arbitrary Waveform Editing Software,
Sequence Editing Software, LabVIEW Driver
Power cord set(2m, with 3-prong plug)

(LabVIEW is registered trademark of National Instruments Corporation. All brand names and product names are trademarks or registered trademarks of their respective companies.)

3. SPECIFICATIONS

The values of items marked with *1 are guaranteed values. All other values are either nominal values or typical (typ.) values, and are not guaranteed.

Conditions unless otherwise mentioned are as follows: Continuous oscillation, 50 Ω load, 10 Vp-p/50 Ω amplitude setting, 0 V DC offset setting, auto-range, $\pm FS$ waveform amplitude range, external addition off, AC voltage = RMS value measurement.

3.1 Oscillation Modes

Continuous, modulated, sweep, burst, sequence

3.2 Waveforms

3.2.1 Standard waveforms

Types Sine, square, pulse, ramp, parameter-variable

waveform, noise (Gaussian distribution), DC Normal, inverted (selectable) (excluding DC)

Polarity Normal, inverted (selectable) (excluding DC) Amplitude range -FS/0, $\pm FS$, 0/+FS (selectable) (excluding DC)

3.2.2 Arbitrary waveforms

Waveform length $4 \text{ K to } 512 \text{ K words } (2^n, n = 12 \text{ to } 19) \text{ or }$

2 to 10,000 control points (linear interpolation

between control points)

Total waveform saving capacity Up to 128 waveforms or 4 M words (combined total for

channels 1 and 2)

Saved to non-volatile memory

Waveform data amplitude resolution 16 bits Sampling rate 120 MS/s

Polarity Normal, inverted (selectable) Amplitude range $-FS/0, \pm FS, 0/+FS$ (selectable)

Output bandwidth 25 MHz, -3 dB

3.3 Frequency, Phase

Frequency setting range

Oscillation Mode	cillation Mode Continuous,		Sequence
	Modulated, Sweep	Single-Shot), Burst	
	(Continuous,		
Waveform	Single-Shot)		
Sine	$0.01 \mu Hz$ to $30 MHz$	$0.01 \mu Hz$ to $10 MHz$	$0.01 \mu Hz$ to $10 MHz$
Square	$0.01 \mu Hz$ to $15 MHz$	$0.01 \mu Hz$ to $10 MHz$	$0.01 \mu Hz$ to $10 MHz$
Pulse	$0.01 \mu Hz$ to $15 MHz$	$0.01 \mu Hz$ to $10 MHz$	Not usable
Ramp	0.01μHz to 5MHz		$0.01 \mu \mathrm{Hz}$ to $5 \mathrm{MHz}$ *2
Parameter-	$0.01 \mu \mathrm{Hz}$ to $5 \mathrm{MHz}$		$0.01 \mu \mathrm{Hz}$ to $5 \mathrm{MHz}$ *2
variable			
Noise	Fixed to 26 MHz equivalent bandwidth		
DC	Frequency setting invalid		
Arbitrary		$0.01 \mu Hz$ to $5 MHz$	

*2: Used through conversion to arbitrary waveform

Frequency setting resolution 0.01 µHz

Frequency setting by period Setting equivalent to inverse number of the set period

Frequency accuracy at shipping *1 \pm (3 ppm of setting + 2 pHz)

Frequency aging rate *1 ±1 ppm/year

Phase setting range -1800.000° to $+1800.000^{\circ}$ (0.001° resolution)

3.4 Output Characteristics

3.4.1 Amplitude

Setting range 0 Vp-p to 20 Vp-p/open, 0 Vp-p to 10 Vp-p/50 Ω

Peak value combining waveform amplitude and DC

offset is limited to ± 10 V/open or lower

Setting resolution 999.9 mVp-p or lower 4 digits or 0.1 mVp-p

1 Vp-p or higher 5 digits or 1 mVp-p

Accuracy *1 $\pm (1\% \text{ of amplitude setting [Vp-p]} + 2 \text{ mVp-p)/open}$

Condition:1 kHz sine, amplitude setting of

20 mVp-p/open or higher

Setting units Vp-p, Vpk, Vrms, dBV, dBm

Range Auto, hold (selectable)

Maximum output voltage range: 20 Vp-p, 4 Vp-p Amplitude attenuator range: 0 dB, -10 dB, -20 dB,

-30 dB

Waveform amplitude resolution Approx. 14 bits

Condition: Amplitude setting of 36 mVp-p/open or

higher

3.4.2 DC offset

Setting range $\pm 10 \text{ V/open}, \pm 5 \text{ V/}50 \Omega$

Setting resolution ±499.9 mV or lower 4 digits or 0.1 mV

 $\pm 0.5 \text{ V}$ or higher 5 digits or 1 mV

Accuracy *1 $\pm (|1\% \text{ of DC offset setting } [V]| + 5 \text{ mV}$

+ 0.5% of amplitude setting [Vp-p])/open

Condition: Sine wave output of 10 MHz or lower, 20°C

to 30°C

Outside 20°C to 30°C temperature range,

1 mV/°C typ. is added

3.4.3 Load impedance setting

Functions Setting and display of the amplitude and DC offset

for the output termination voltage under the specified

load condition

Setting range 1Ω to $10 \text{ k}\Omega$ (1Ω resolution), 50Ω , High-Z (load open)

3.4.4 Waveform output

Output on/off control On, Off (selectable) (When Off, output pin open state)

Output impedance 50Ω , unbalanced

Short-circuit protection Protection against short circuit to signal GND

Output connector Front panel, BNC receptacle

3.4.5 Sync/sub output

Output signal Reference phase sync, internal modulation sync,

burst sync, sweep sync, sequence step sync, internal

modulation signal, sweep X drive (selectable)

Reference phase sync output waveform

Square waveform with 50% duty that rises at zero

phase position of reference phase (DDS oscillation

phase) of waveform output

Output voltage Sync signals: TTL level (low level of 0.4 V/open or

lower, high level of 2.7 V/open or higher)
Internal modulation signal: -3 V to +3 V/open

Sweep X drive: 0 V to +3 V/open

Output impedance 50Ω , unbalanced

3.5 Signal Characteristics

3.5.1 Sine wave

Amplitude frequency characteristics *1

 $\begin{array}{lll} 100 \; \text{kHz or lower} & \pm 0.1 \; \text{dB} \\ 100 \; \text{kHz to 5 MHz} & \pm 0.15 \; \text{dB} \\ 5 \; \text{MHz to 20 MHz} & \pm 0.3 \; \text{dB} \end{array}$

20 MHz to 30 MHz $\pm 0.5 \text{ dB}(\pm 0.8 \text{ dB} \text{ at amplitude setting of } 2.8 \text{ Vp-p/50 } \Omega$

or higher)

Condition: Amplitude setting 50 mVp-p to 10 Vp-p/50

 Ω , reference frequency 1 kHz

Total harmonic distortion *1

10 Hz to 20 kHz 0.2% or less

Condition:Amplitude setting of 0.5 Vp-p to 10 Vp-p/50 Ω

Harmonic spurious *1

Condition: Amplitude setting -0.5 Vp-p to 2 Vp-p/50 Ω --2 Vp-p to 10 Vp-p/50 Ω

Non-harmonic spurious *1

 $\begin{array}{lll} 1 \ \mathrm{MHz} \ \mathrm{or} \ \mathrm{lower} & -60 \ \mathrm{dBc} \ \mathrm{or} \ \mathrm{lower} \\ 1 \ \mathrm{MHz} \ \mathrm{to} \ 10 \ \mathrm{MHz} & -50 \ \mathrm{dBc} \ \mathrm{or} \ \mathrm{lower} \\ 10 \ \mathrm{MHz} \ \mathrm{to} \ 30 \ \mathrm{MHz} & -45 \ \mathrm{dBc} \ \mathrm{or} \ \mathrm{lower} \end{array}$

Condition: Amplitude setting of 0.5 Vp-p to 10 Vp-p/50 Ω

3.5.2 Square wave

Duty

Variable range selectable Normal, extended (selectable)

Normal range Duty can be changed in range with little jitter and no

pulse loss. The higher the frequency, the narrower the

duty setting range.

Extended range With 2.5 ns rms or less typ. jitter, duty can be

changed always in maximum range. In the case of a pulse width of 8.4 ns or less, loss may occur; on

average, it is equal to the set duty.

Setting range

Normal range 0.0100% to 99.9900% (0.0001% resolution)

Upper limit (%): 100 – frequency (Hz) / 300,000 Lower limit (%): frequency (Hz) / 300,000

Extended range 0.0000% to 100.0000% (0.0001% resolution)

Duty accuracy *1

 $\begin{array}{lll} 100 \text{ kHz or lower} & \pm 0.1\% \text{ of period (duty setting } 1\% \text{ to } 99\%) \\ 100 \text{ kHz to } 1 \text{ MHz} & \pm 1\% \text{ of period (duty setting } 5\% \text{ to } 95\%) \\ 1 \text{ MHz to } 3 \text{ MHz} & \pm 3\% \text{ of period (duty setting } 40\% \text{ to } 60\%) \end{array}$

Rising/falling time *1 17 ns or less

However, approx. 20 ns in the case of burst oscillation with stop level setting, gated single-shot sweep with

stop level setting, and sequence oscillation

Overshoot 5% or less typ.

Jitter Normal variable duty range: 300 ps rms or less typ.

(100 Hz or higher)

Extended variable duty range: 2.5 ns rms or less typ.

3.5.3 Pulse wave

Pulse width

Duty setting range 0.0170% to 99.9830% (0.0001% resolution)

Time setting range 25.50 ns to 99.9830 Ms (0.001% or less of period, or

0.01 ns resolution)

Leading edge time, trailing edge time

Setting range 15.0 ns to 58.8 Ms (3 digits or 0.1 ns resolution)

Leading edge time and trailing edge time

independently settable

Minimum setting value Largest of either 0.01% of period or 15 ns

Pulse width, leading edge time, trailing edge time limits

The pulse width time, leading edge time, trailing edge time, and period are mutually constrained by the following equations.

The duty is converted from pulse width time / period.

(leading edge time + trailing edge time) $\times 0.85 \le$ pulse width time

pulse width time ≤ period – (leading edge time + trailing edge time) × 0.85

Overshoot 5% or less typ.

Jitter 500 ps rms or less typ. (10 kHz or higher)

2.5 ns rms or less typ. (under 10 kHz)

3.5.4 Ramp wave

Symmetry setting range 0.00% to 100.00% (0.01% resolution)

3.5.5 Parameter-variable waveforms

a) Steady sine group

Waveform	Waveform	Description and Variable Parameters
Name	Example	-
Unbalanced sine	- 18-7	Waveform for which the amplitudes of the first half cycle and second half cycle of a sine wave can be changed independently
		First-half amplitude (-100.00% to 100.00%) Second-half amplitude (-100.00% to 100.00%)
Clipped sine	-18T	Waveform obtained by clipping the top and bottom of the amplitude of a sine wave
	-001	Clip rate (0.00% to 99.99%)
CF controlled	- 18-7	Waveform obtained by extracting only the 90° and 270° neighborhood of a sine wave and expanding the amplitude
sine	-0+1	Crest factor (1.41 to 10.00)
Conduction angle	- 187	Waveform obtained by extracting only the front or back of each half cycle of a sine wave
controlled sine		Conduction angle (-180.00° to 180.00°) Remark: In the case of a positive/negative conduction angle,
		back/front conduction angle
Staircase	-14T	Staircase shaped sine wave
sine	-044 - E	Number of steps (2 to 100)
Multi-cycle	-12T	Waveform obtained by continuing sine for several cycles
sine		Number of cycles (0.01 to 50.00)
		Start phase (-360.00° to 360.00°)

b) Transient sine group

Waveform Name	Waveform Example	Description and Variable Parameters
On-phase controlled sine		Sine wave with slope into on state Complete-on phase (0.00° to 360.00°) On-slope time (0.00% to 50.00% of basic period)
Off-phase	-1-7	Sine wave with slope into off state
controlled sine	-0x1	Off-phase (0.00° to 360.00°) Off-slope time (0.00% to 50.00% of basic period)
Chattering-	- 14T	Sine wave with chattering into on state
on sine		On-phase (0.00° to 360.00°) Number of chatterings (0 to 3) On-state time (0.00% to 20.00% of basic period) Off-state time (0.00% to 20.00% of basic period)
Chattering-	-1 -1	Sine wave with chattering into off state
off sine		Off-phase (0.00° to 360.00°) Number of chattering (0 to 3) On-state time (0.00% to 20.00% of basic period) Off-state time (0.00% to 20.00% of basic period)

c) Pulse group

ulse group		
Waveform Name	Waveform Example	Description and Variable Parameters
Gaussian pulse	- 14	Gaussian distribution waveform Standard deviation (0.01% to 100.00% of basic period)
Lorentz	- 18T	Lorentz waveform
pulse	-09	Half value of width (0.01% to 100.00% of basic period)
Haversine	-1-7	Sin² pulse Width (0.01% to 100.00% of basic period)
Half-sine		Half-sine cycle pulse
pulse	- +	Width (0.01% to 100.00% of basic period)
Trapezoid	-1 -1	Trapezoid pulse
pulse	-04	Slope width (0.00% to 50.00% of basic period) Upper base width (0.00% to 100.00% of basic period)
Sin(x)/x	- 19T	Sin(x)/x waveform
	-01	Number of zero crossings (1 to 50)

d) Transient response group

Waveform Name	Waveform Example	Description and Variable Parameters
Exponential rise	- 1 =	First order LPF step response waveform Time constant (0.01% to 100.00% of basic period)
Exponential fall		First order HPF step response waveform Time constant (0.01% to 100.00% of basic period)
Second order LPF step response		Second order LPF step response waveform LPF natural frequency (1.00 to 50.00 times basic frequency) LPF Q (0.50 to 50.00)
Damped oscillation	- 1 by	Oscillation waveform with an amplitude that decreases exponentially Oscillation frequency (0.01 to 50.00 times basic frequency) Damping time constant (-100.00% to 100.00% of basic period) Remark: In the case of a negative damping time constant, oscillation waveform with an amplitude that increases exponentially

e) Surge group

nge group			
Waveform Name	Waveform Example	Description and Variable Parameters	
Oscillation	-1 -1	Surge waveform with damped oscillation	
surge	-0-4/A	Oscillation frequency (0.01 to 50.00 times basic frequency) Damping time constant (0.01% to 100.00% of basic period) Trailing time constant (0.01% to 100.00% of basic period)	
Pulse surge		Pulsed surge waveform	
		Rising time (0.01% to 100.00% of basic period)	
		Duration time (0.01% to 100.00% of basic period)	
		Remark: The rising time represents the time from the 10%	
		threshold to the 90% threshold of the rising edge. The	
	-1	duration time represents the time from 10% threshold of the	
		rising edge to the 10% threshold of the next falling edge.	

f) Others group

mone Broad			
Waveform Name	Waveform Example	Description and Variable Parameters	
Trapezoid		Trapezoid waveform with offset in the amplitude direction	
with offset	- 1	Leading delay (0.00% to 100.00% of basic period) Rising-slope width (0.00% to 100.00% of basic period) Upper base width (0.00% to 100.00% of basic period) Falling-slope width (0.00% to 100.00% of basic period) Offset (0.00% to 100.00%)	
Half-sine	- 15T	Pulse whose rise and fall are half-sine waveform	
edge pulse	- 0 m l	Leading edge time (0.00% to 100.00% of basic period) Trailing edge time (0.00% to 100.00% of basic period) Duty (0.00% to 100.00%)	
Bottom	- 1 5 T	Ramp waveform with bottom level as reference	
referenced ramp		Symmetry(0.00% to 100.00%)	

3.6 Modulated Oscillation Mode

3.6.1 General

Modulation type FM, FSK, PM, PSK, AM, DC offset modulation, PWM

Modulation source Internal, external (selectable)

Internal modulation waveform

Other than FSK, PSK Sine wave, square wave (50% duty), triangular wave

(50% symmetry), rising ramp wave, falling ramp

wave, noise, arbitrary wave

FSK, PSK Square wave (50% duty)

Internal modulation frequency

Other than FSK, PSK 0.1 mHz to 100 kHz (5 digits or 0.1 mHz resolution) FSK, PSK 0.1 mHz to 1 MHz (5 digits or 0.1 mHz resolution)

Internal modulation sync output

Output waveform Square wave with 50% duty that rises at zero phase

position of internal modulation waveform

Fixed to low level while internal modulation

waveform is noise

Output connector Shared with sync/sub-output connector

Internal modulation signal output

Output voltage -3 V to +3 V/open

Output connector Shared with sync/sub-output connector

External modulation input (other than FSK, PSK)
Input voltage range ±1 V full scale

Maximum allowed input ±2 V

 $\begin{array}{ll} \text{Input impedance} & 10 \text{ k}\Omega, \text{ unbalanced} \\ \text{Input frequency} & DC \text{ to } 25 \text{ kHz} \end{array}$

Input connector Front panel (WF1973) / rear panel (WF1974)

BNC receptacle

Shared with external addition input, cannot be used

simultaneously with adding operation

External modulation input (FSK, PSK)

Polarity Positive, negative (selectable)

Input frequency DC to 1 MHz

Input connector Use of external trigger input.

Input voltage and input impedance follow the

external trigger input specifications.

3.6.2 Modulation conditions

■ FM

Carrier waveform Standard waveform other than noise, pulse wave and

DC, and arbitrary waveform

Peak deviation setting range 0.00 μHz to less than 15 MHz (8 digits or 0.01 μHz

resolution)

■ FSK

Carrier waveform Standard waveform other than noise, pulse wave and

DC, and arbitrary waveform

Hop frequency setting range Within settable carrier waveform frequency range

(8 digits or 0.01 µHz resolution)

■ PM

Carrier waveform Standard waveform other than noise and DC, and

arbitrary waveform

Peak deviation setting range 0.000° to 180.000° (0.001° resolution)

■ PSK

Carrier waveform Standard waveform other than noise and DC, and

arbitrary waveform

Deviation setting range -1800.00° to $+1800.000^{\circ}(0.001^{\circ}$ resolution)

Remark The sine wave amplitude frequency characteristics

during PSK are limited to 25 MHz, -3 dB.

■ AM(non-DSB-SC)

Carrier waveform Standard waveform other than DC, and arbitrary

waveform

Modulation depth setting range

0.0% to 100.0% (0.1% resolution) Remark

When the modulation depth is 0%, the amplitude is

1/2 of the set value.

■ AM(DSB-SC) (Double Side Band - Suppressed Carrier)

Carrier waveform Standard waveform other than DC, and arbitrary

waveform

Modulation depth setting range

Remark When the modulation depth is 100%, the maximum

amplitude is equal to the set value.

0.0% to 100.0% (0.1% resolution)

During DSB-SC, the carrier frequency component is

zero.

■ DC offset modulation

Carrier waveform Standard waveform and arbitrary waveform

Peak deviation setting range 0 V to 10 V/open

■ PWM

Carrier waveform Square wave, pulse wave

Peak deviation setting range

Square wave

0.0000% to 49.9900% (0.0001% resolution) Normal variable duty range Extended variable duty range 0.0000% to 50.0000% (0.0001% resolution) Pulse wave 0.0000% to 49.9000% (0.0001% resolution)

3.7 Sweep Oscillation Mode

General 3.7.1

> Sweep types Frequency, phase, amplitude, DC offset, duty

Sweep functions One-way (ramp waveform shape), shuttle(triangular

waveform shape) (selectable)

Linear, log (frequency sweep only) (selectable)

Sweep range setting Start value and stop value specification

Center value and span value specification

0.1 ms to 10,000s (4 digits or 0.1 ms resolution) Sweep time setting range

Sweep mode Continuous, single-shot, gated single-shot

(selectable)

During gated single-shot, oscillation occurs only

during sweep execution

Operation Start, stop, hold/resume, start value output, stop

value output

Trigger source (used for single-shot sweep and gated single-shot sweep)

Internal, external (selectable)

Trigger delay setting is invalid. Manual trigger

possible.

Internal trigger oscillator for sweep

(used for single-shot sweep and gated single-shot sweep)

Period setting range 100.0 µs to 10,000 s (5 digits or 0.1 µs resolution)

Stop level setting (used for gated single-shot sweep)

Function Specification of signal level while oscillation is

stopped during gated single-shot sweep

Setting range -100.00% to +100.00% of amplitude full scale (0.01%)

resolution) or off

Oscillation stop unit during gated single-shot

1 cycle, 0.5 cycles (selectable)

Sweep sync/marker output

Marker off, one-way sweep Low level from sweep start value to half of sweep

time.

High level at any other time.

Marker off, shuttle sweep Low level from sweep start value to sweep stop value.

High level at any other time.

Marker on Low level from sweep start value until marker value.

High level at any other time.

Output connector Shared with sync/sub-output connector

Sweep X drive output

Output voltage 0 V to +3 V/open

 $0 \text{ V} \rightarrow +3 \text{ V}$ during sweep value rise $+3 \text{ V} \rightarrow 0 \text{ V}$ during sweep value fall Shared with sync/sub-output connector

Output connector Sweep external control input

Input connector Use of 3 bits of multi-I/O connector

Control items Start, stop, hold/resume

Sweep external trigger input (used for single-shot sweep and gated single-shot sweep)

Polarity Positive, negative, off (selectable)
Input connector Use of external trigger input.

Input voltage and input impedance follow the

external trigger input specifications.

3.7.2 Sweep conditions

■ Frequency sweep

Waveform Standard waveform other than noise, pulse wave, and

DC, and arbitrary waveform

Start, stop frequency setting range 0.01 µHz to 30 MHz (0.01 µHz resolution)

■ Phase sweep

Waveform Standard waveform other than noise and DC, and

arbitrary waveform

Start, stop phase setting range -1800.000° to 1800.000° (0.001° resolution)

■ Amplitude sweep

Waveform Standard waveform other than DC, and arbitrary

waveform

Start, stop amplitude setting range 0 Vp-p to 20 Vp-p/open

■ DC offset sweep

Waveform Standard waveform and arbitrary waveform

Start, stop DC offset setting range -10 V to +10 V/open

■ Duty sweep

Waveform Square wave, pulse wave

Start, stop duty setting range

Square wave

Normal variable duty range 0.0100% to 99.9900% (0.0001% resolution) Extended variable duty range 0.0000% to 100.0000% (0.0001% resolution) Pulse wave 0.0170% to 99.9830% (0.0001% resolution)

3.8 Burst Oscillation Mode

Burst mode

Auto burst Repeats oscillation of mark wave number and

oscillation stop of space wave number.

Trigger invalid.

Trigger burst Performs oscillation of mark wave number in sync

with trigger.

Gate Performs oscillations in cycles of integers or integer

multiples of half-cycles, in sync with the gate signal. However, if the waveform is noise, oscillation on/off

operation is done through the gate signal.

Triggered gate Gate oscillation switched on/off by gate upon trigger.

Target waveforms

Auto, trigger burst Standard waveform other than noise and DC, and

arbitrary waveform

Gate, triggered gate Standard waveform other than DC, and arbitrary

waveform

Setting range of mark wave number 0.5 cycles to 999,999.5 cycles, in 0.5-cycle units Setting range of space wave number 0.5 cycles to 999,999.5 cycles, in 0.5-cycle units

Oscillation stop unit during gate 1 cycle, 0.5 cycles (selectable)

Oscillation start/stop phase setting range

 -1800.000° to $+1800.000^{\circ}$ (0.001° resolution)

Remark:Same setting value as phase setting in

section 3.3

Stop level setting range

Function Specification of signal level when oscillation is

stopped

Setting range -100.00% to +100.00% of amplitude full-scale (0.01%

resolution) or off

When the stop level is set to off, stop occurs at the set

oscillation start/stop phase

Trigger source (used during other than auto burst)

Internal, external (selectable). Manual trigger

possible.

Internal trigger oscillator for burst (used during other than auto burst)

Period setting range $1.0 \mu s$ to 1,000 s (5 digits or $0.1 \mu s$ resolution)

Trigger delay setting range 0.00 µs to 100.00 s (5 digits or 0.01 µs resolution)

Latent delay of $0.55~\mu s$

Only valid for trigger burst (not valid for gate,

triggered gate)

Valid for both internal and external trigger sources

Not valid for manual trigger

Trigger jitter 1 ns rms or less typ.

Burst sync output

Polarity Low level during oscillation. High level at all other

times

Output connector Shared with sync/sub-output connector

3.9 Triggers

External trigger input

Input voltage

Applications Used for single-shot sweep, gated single-shot sweep,

trigger burst, gate, triggered gate, and sequence TTL level (low level of 0.8 V or lower, high level of

2.6 V or higher) -0.5 V to +5.5 V

Maximum allowed input

Polarity

Positive, negative, off (selectable)

FSK and PSK, sweep, sequence (independently

settable)

50 ns

Minimum pulse width

Input impedance
Input connector

10 k Ω (pulled up to +3.3 V), unbalanced Front panel (WF1973) / rear panel (WF1974)

BNC receptacle

Manual trigger Panel key operation

Applications Used for single-shot sweep, gated single-shot sweep,

trigger burst, gate, triggered gate

Refer to internal trigger oscillator of each section

3.10 Sequence

Number of saved sequences 10 sequences (saved to non-volatile memory)

Maximum number of steps Maximum of 255 steps per sequence (not including

step of pre-start status)

sequence mode. Step control is done in common for

both channels.

Step control parameters Step time, hold operation, jump destination, number

of jumps, step stop phase, branch operation, step

termination control, step sync code output

Intra-step channel parameters Waveform, frequency, phase, amplitude, DC offset,

square wave duty

In-step operations Constant, keep, linear interpolation (except

waveform switching)

Step time setting range 0.1 ms to 1,000 s (4 digits or 0.01 ms resolution)

Jump count setting range 1 to 999 or infinite

Step stop phase setting range 0.000° to 360.000° (CH1 reference phase. 0.001°

resolution) or invalid

Branch operation

State branch Check of state branch input from multi-I/O connector

at step end. Upon branch input detection, branching

to specified destination step.

Event branch Immediate branching to specified destination step

through event branch manipulation or input

Control of step termination Sequence end or transition to next step

Step sync code output Output of 4-bit code specified for each step to multi-

I/O connector

LSB outputtable to sync/sub-output connector

Usable waveforms Sine wave, square wave, noise, DC, and arbitrary

wave

Ramp wave and parameter-variable waveform can be

used through saving as arbitrary waveforms

Start, stop, hold/resume, event branch

Maximum number of usable waveforms

128

Step start phase Oscillation start from reference phase 0° of each

channel at next step after DC or noise (excluding DC

and noise)

Sequence manipulations

Sequence external control

Input connector Use of 4 bits of multi-I/O connector

Control items Start or state branch, stop, hold/resume, event

branch

Sequence external trigger input (start trigger)

Polarity Positive, negative, off (selectable)

Input connector Use of external trigger input on CH1 side. Input

voltage and input impedance follow the external

trigger input specifications.

3.11 Other I/Os

External 10 MHz frequency reference input

Frequency reference selection External reference enable, disable (selectable)

Input voltage 0.5 Vp-p to 5 Vp-p

Maximum allowed input 10 Vp-p

Input impedance $1 \text{ k}\Omega$, unbalanced, AC coupled Input frequency $10 \text{ MHz} (\pm 0.5\% (\pm 50 \text{ kHz}))$

Input waveform Sine wave or square wave $(50 \pm 5\% \text{ duty})$

Input connector Rear panel, BNC receptacle

Frequency reference output (for synchronizing multiple WF1973, WF1974 units)

Output voltage 1 Vp-p/50 Ω square wave

Output impedance 50Ω , AC coupled

Output frequency 10 MHz

Output connector Real panel, BNC receptacle

External addition input

Addition gain $\times 2$, $\times 10$, off (selectable)

During ×2, the maximum output voltage range is

fixed to 4 Vp-p, and during ×10, 20 Vp-p.

Off during sequence oscillation

Input voltage -1 V to +1 V

Maximum allowed input ±2 V

 $\begin{array}{ll} \text{Input frequency} & \text{DC to 10 MHz (-3 dB)} \\ \text{Input impedance} & \text{10 k}\Omega\text{, unbalanced} \end{array}$

Input connector Front panel (WF1973) / rear panel (WF1974)

BNC receptacle

Shared with external modulation input, cannot be

used during external modulation

Multi-I/O

Applications Sweep control, sequence control

Input voltage $$\operatorname{TTL}$$ level (low level of 0.8 V or lower, high level of

2.6~V or higher. Pulled up to +5 V through 10 $k\Omega)$

Maximum allowed input -0.5V to +5.5 V

Output voltage TTL level (low level of 0.4 V/open or lower, high level

of 2.7 V/open or higher)

Connector Rear panel, Mini-Dsub 15-pin multiconnector

3.12 2-channel ganged operation (WF1974 only)

Channel modes

Channel modes	Operation
Independent	Independent setting
2-phase	Holds same frequency. During frequency sweep, internal frequency modulation, and internal FSK, controls to hold the same frequency. External frequency modulation and external FSK are not possible.
<u> </u>	Phase independently set for each channel.
Constant frequency difference	Holds the frequency difference as a constant value. During frequency sweep, internal frequency modulation, and internal FSK, controls to hold the frequency difference. External frequency modulation and external FSK are not possible.
Constant	Holds the frequency ratio as a constant value. During
frequency ratio	frequency sweep, internal frequency modulation, and internal FSK, controls to hold the frequency ratio. External frequency modulation and external FSK are not possible.
Differential	Same frequency, amplitude, and DC offset. Reverse phase
Output	waveform. Controls to hold differential output during all types of sweep and internal modulation. External modulation and external addition are not possible.

Common limiting conditions during 2-phase, constant frequency difference, constant frequency ratio, and differential output

- Oscillation in same oscillation mode (also same modulation type during modulated oscillation, and same sweep type during sweep oscillation)
- Applicable to standard waveform other than noise and DC, and arbitrary waveform
- Burst, gated single-shot sweep not possible

Same value setting, same manipulation

Yes

Frequency difference setting range 0.00 µHz to less than 30 MHz (0.01 µHz resolution)

CH2 frequency - CH1 frequency

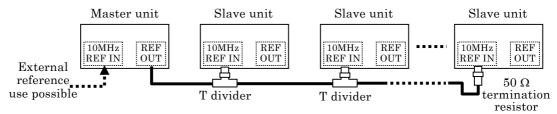
Frequency ratio N:M setting range 1 to 9,999,999 (for each of N and M)

N:M = CH2 frequency:CH1 frequency

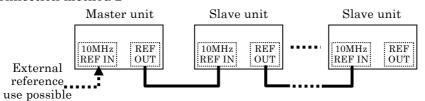
Phase synchronization Automatically executed during channel mode

switching

Time difference between channels during 2-phase *1


 ± 20 ns or less (± 10 ns or less typ.)

Condition:Same waveform (sine or square)


3.13 Synchronous Operation of Multiple Units

Connection

Connection method 1

Connection method 2

Connection cable

Cable type Coaxial cable of characteristic impedance 50 Ω with

BNC connector (RG-58A/U, etc.)

Cable length limit 1 m or less between units, total length of 3 m or less

Maximum number of connectable units

Connection method 1: 6 units including master unit

Connection method 2: 4 units including master unit

Phase synchronization operation Manual operation

Time difference between units

Delay of each channel of nth slave unit in relation to each channel of the master unit $(1 \le N)$

Connection method 1:

 $31 \text{ ns} + (N-1) \times 6 \text{ ns}$ $\pm 25 \text{ ns or less typ.}$

Connection method 2:

 $31 \text{ ns} + (N-1) \times 31 \text{ ns} \pm 25 \text{ ns or less typ.}$

Condition:Same frequency, same phase, same waveform (sine or square), length of connection cable between frequency reference output and external frequency

reference input = 1 m (RG-58A/U)

3.14 User - Defined Units

Function Setting and display in arbitrary unit according to the

specified conversion expression

Setting target Frequency (Hz), period (sec), amplitude (Vp-p, Vpk),

DC offset (V), phase (deg), duty (%)

Conversion expression [(Setting target value) + n] $\times m$, or

 $[\log_{10} (\text{setting target value}) + n] \times m$

Specification of conversion expression and values of n

and m

Unit character string Up to 4 characters can be set

3.15 Other Functions

Setting saving capacity 10 settings(saved to non-volatile memory) External control GPIB, USBTMC (SCPI-1999, IEEE-488.2)

3.16 Options

PA-001-1318 multi-I/O cable

Cable with connector on one end, for connection to multi-I/O connector on rear panel. 2 m length. Cut off

at one end

3.17 General Characteristics

Display unit 3.5 inch TFT color LCD

I/O ground

The signal grounds for waveform output (FCTN OUT), sync/sub-output (SYNC/SUB OUT), and external modulation/addition input (MOD/ADD IN) are insulated from the housing. These signal grounds are shared within the same channel.

The signal ground for the external 10 MHz reference input (10 MHz REF IN) is insulated from the housing.

Each of the signal grounds of CH1, CH2, and 10MHz REF IN are independent. The withstand voltage between insulated signal grounds and between housings is 42 Vpk max. (DC + AC peak)

The other signal grounds are connected to the housing.

Power supply

Power supply voltage range 100 V AC to $230 \text{ V AC} \pm 10\%$ (250 V or lower)

Power supply frequency range $50 \text{ Hz}/60 \text{ Hz} \pm 2 \text{ Hz}$ Power consumption WF1973: 50 VA or less WF1974: 75 VA or less

WF1974: 75 VA

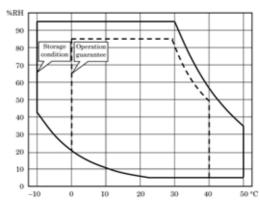
Overvoltage category II

Ambient temperature and humidity ranges

Operation guarantee 0°C to +40°C, 5%RH to 85%RH

Absolute humidity of 1 g/m³ to 25 g/m³,

no condensation


Temperature range limitations apply for some

specifications.

Storage conditions -10°C to +50°C, 5%RH to 95%RH

Absolute humidity of 1 g/m³ to 29 g/m³,

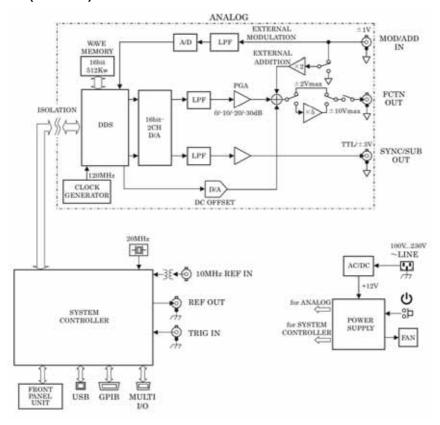
no condensation

Warm-up time 30 minutes or more typ.

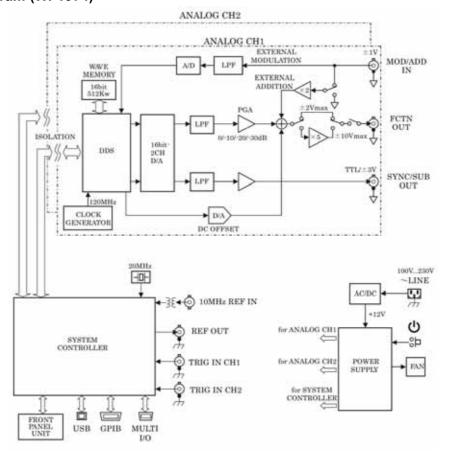
Pollution degree 2

External dimensions $216 \text{ (W)} \times 88 \text{ (H)} \times 332 \text{ (D)} \text{ mm (excluding projections)}$ Weight Approx. 2.1 kg (excluding accessories, weight of main

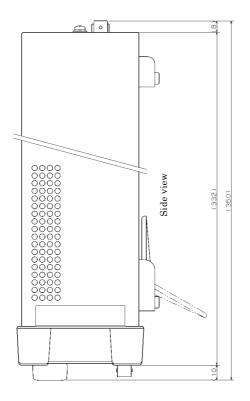
unit only)

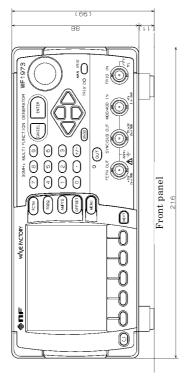

Safety and EMC

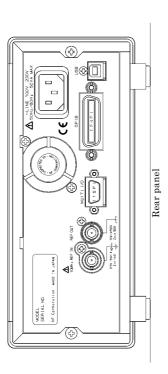
Applied only for models with CE marking on their rear panels


Safety EN61010-1:2001

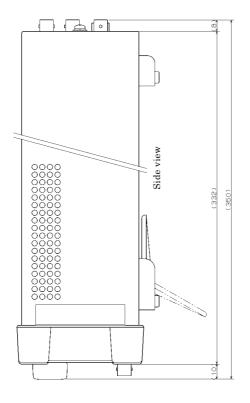
EMC EN61326:1997 + A1:1998 + A2:2001 + A3:2003


■Block diagram (WF1973)

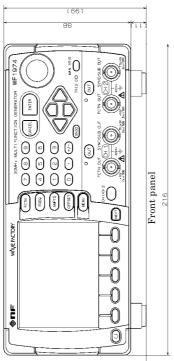

■Block diagram (WF1974)

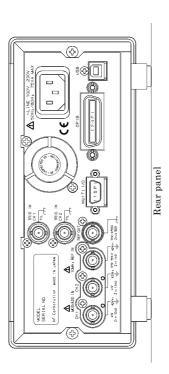


■External dimensions (WF1973)



Surface treatment
Front panel: Plastic ultra-light gray (Munsell 6PB9.2/0.1)
Rear panel: Munsell 8.5PB2.6/0.2
Covers: Light gray leather tone (Munsell 6PB7.6/1.2 leather tone)





■External dimensions (WF1974)

Surface treatment
Front panel: Plastic ultra-light gray (Munsell 6PB9.2/0.1)
Rear panel: Munsell 8.5PB2.6/0.2
Covers: Light gray leather tone (Munsell 6PB7.6/1.2 leather tone)

WF1973 / WF1974 Specifications

NF Corporation

3-20 Tsunashima Higashi 6-chome, Kohoku-ku. Yokohama-shi 223-8508, JAPAN Phone: 81-45-545-8128 Fax: 81-45-545-8187 http://www.nfcorp.co.jp/

© Copyright 2007, NF Corporation