CEM3-G-BTA

Wireless Data Transfer Digital Torque Wrench with Angle

Tightening Data Management System

- Transfer collected data wirelessly by built in Bluetooth® module
- Angle monitoring at the peak tightening torque or measured torque value
- · Wireless duplex communication sends the Hi/Lo limit torque and angle settings to the wrench then sends the collected data back out to PC

Accuracy 1170												
Head Size	Model	Torque Range						Overall	Angle Denge			
		N·m		kgf∙m		lbf·ft		Length	Angle Range		Angle	Weight
		MinMax.	1digit	MinMax.	1digit	MinMax.	1digit	[mm]	٠ ١	1digit	Accuracy	[kg]
8D	CEM10N3×8D-G-BTA	2-10	0.01	0.200-1.000	0.001	1.50-7.30	0.01	212		0-999° 1°	±2°+1digit (Angular velocity is 30°/ X~180°/s when the bolt turned to 90°)	0.54
10D	CEM20N3×10D-G-BTA	4-20	0.02	0.400-2.000	0.002	3.00-14.50	0.02	214				0.55
12D	CEM50N3×12D-G-BTA	10-50	0.05	1.000-5.000	0.005	7.50-36.00	0.05	282				0.66
15D	CEM100N3×15D-G-BTA	20-100	0.1	2.00-10.00	0.01	15.0-73.0	0.1	384	0.0000			0.71
19D	CEM200N3×19D-G-BTA	40-200	0.2	4.00-20.00	0.02	30.0-150.0	0.2	475	0-999			0.86
22D	CEM360N3×22D-G-BTA	72-360	0.4	7.2-36.00	0.04	52.0-260.0	0.4	713				1.21
	CEM500N3×22D-G-BTA	100-500	0.5	10.00-50.00	0.05	73.0-360.0	0.5	949				4.08
32D	CEM850N3×32D-G-BTA	170-850	1	17.0-85.0	0.1	124-620	1	1387				5.22

- 1. For the specification, standard accessories and note of the basic CEM3-G model, refer to page 39.
- Trigger torque can be set from the 5% of the maximum torque to the maximum
- 3. Trigger torque set below the minimum torque range of the body is not guaranteed

By monitoring the final torque and the final angle, reliability for tightening and inspection data can be confirmed

For Inspection

Monitoring excessive or extremely small angle rotation during the re-tightening inspection will provide evidence for correct data verification.

M-Mode: Inspection Right Operation ower Anale Hiaher Anale Angle OK High Trigge Retightening High Target Torque

Possible causes of angle monitoring results

Angle Low

Angle High

- Possibility of the operation errors
- Stopped loading before the bolt moving

- Possibility of the operation errors

Torque

Tightening

Angle OK

Torque

- Torque OK / NG Torque OK, Angle OK

Target Torque

Error Operation

Torque NG, Angle OK Angle NG - Rotated too much on the retightening inspection process

Right Operation

For Tightening

By detecting final angle at the completion of the tightening operation, it is possible to eliminate tightening errors caused by provisional tightening, the tightening application or double tightening.

Judgment Result Display

- L:Less than the lower limit (Low-NG)
- H :Beyond the upper limit (High-NG)
- D:Double tightening (NG tightening)

Possible causes of angle monitoring results

Angle Low

- Double Tightening

- Cross Threaded Screw
- Defect fo work/Bolt - Contamination

Angle High

- Defect of Work/Bolt
- Lack of O-Ring/Gasket
- Over torque of the provisional tightening

T-Mode: Tightening Right Operation Double Tightening Judgment Angle oĸ Angle High Trigger Torque **Tightening** High

T-Mode: Double Tightening Detection Double Tightening nt Angle Double Tightening / Work Error Angle **Double Tightening** Double

Target Torque

Error Operation

High

Torque OK / NG Angle NG